查看当前安装的linux内核版本号
查看当前安装的linux内核版本号
官方文档:https://pandas.pydata.org/docs/reference/index.html
1.loc属性,通过标签或布尔数组访问一组行和列。pandas.DataFrame.loc
hive集群的版本是1.1.0-cdh5.16.2,而datagrip自带的hive driver版本是3.1.1和3.1.2,所以需要自行添加driver
参考:kerberos-2.datagrip(jdbc)连接hive kerberos
add custome JARs,所需要的jar包如下
添加hive URL
k-近邻算法(kNN)采用测量不同特征值之间的距离方法进行分类。
优点:精度高、对异常值不敏感、无数据输入假定
缺点:计算复杂度高、空间复杂度高
使用数据范围:数值型和标称型
工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中的k的出处,通常k是不大于20的整数。然后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。
1.机器学习的主要任务:
一是将实例数据划分到合适的分类中,即分类问题。 而是是回归, 它主要用于预测数值型数据,典型的回归例子:数据拟合曲线。
2.监督学习和无监督学习:
分类和回归属于监督学习,之所以称之为监督学习,是因为这类算法必须直到预测什么,即目标变量的分类信息。
对于无监督学习,此时数据没有类别信息,也不会给定目标值。在无监督学习中,将数据集合分成由类似的对象组成的多个类的过程被成为聚类;将寻找描述数据统计值的过程称之为密度估计。此外,无监督学习还可以减少数据特征的维度,以便我们可以使用二维或者三维图形更加直观地展示数据信息。
3.线性回归和非线性回归
线性回归需要一个线性模型。一个线性的模型意味着模型的每一项要么是一个常数,要么是一个常数和一个预测变量的乘积。一个线性等式等于每一项相加的和。等式:
使用beeline连接hive