tonglin0325的个人主页

Spark学习笔记——读写HDFS

使用Spark读写HDFS中的parquet文件

文件夹中的parquet文件

build.sbt文件

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
name := "spark-hbase"

version := "1.0"

scalaVersion := "2.11.8"

libraryDependencies ++= Seq(
"org.apache.spark" %% "spark-core" % "2.1.0",
"mysql" % "mysql-connector-java" % "5.1.31",
"org.apache.spark" %% "spark-sql" % "2.1.0",
"org.apache.hbase" % "hbase-common" % "1.3.0",
"org.apache.hbase" % "hbase-client" % "1.3.0",
"org.apache.hbase" % "hbase-server" % "1.3.0",
"org.apache.hbase" % "hbase" % "1.2.1"
)

 

Scala实现方法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql._
import java.util.Properties

import com.google.common.collect.Lists
import org.apache.spark.sql.types.{ArrayType, StringType, StructField, StructType}
import org.apache.hadoop.hbase.HBaseConfiguration
import org.apache.hadoop.hbase.client.{Result, Scan}
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import org.apache.hadoop.hbase.mapreduce.TableInputFormat


/**
* Created by mi on 17-4-11.
*/

case class resultset(name: String,
info: String,
summary: String)

case class IntroItem(name: String, value: String)


case class BaikeLocation(name: String,
url: String = "",
info: Seq[IntroItem] = Seq(),
summary: Option[String] = None)

case class MewBaikeLocation(name: String,
url: String = "",
info: Option[String] = None,
summary: Option[String] = None)


object MysqlOpt {

def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("WordCount").setMaster("local")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
import sqlContext.implicits._

//定义数据库和表信息
val url = "jdbc:mysql://localhost:3306/baidubaike?useUnicode=true&characterEncoding=UTF-8"
val table = "baike_pages"

//读取parquetFile,并写入Mysql
val sparkSession = SparkSession.builder()
.master("local")
.appName("spark session example")
.getOrCreate()
val parquetDF = sparkSession.read.parquet("/home/mi/coding/coding/baikeshow_data/baikeshow")
// parquetDF.collect().take(20).foreach(println)
//parquetDF.show()

//BaikeLocation是读取的parquet文件中的case class
val ds = parquetDF.as[BaikeLocation].map { line =>
//把info转换为新的case class中的类型String
val info = line.info.map(item => item.name + ":" + item.value).mkString(",")
//注意需要把字段放在一个case class中,不然会丢失列信息
MewBaikeLocation(name = line.name, url = line.url, info = Some(info), summary = line.summary)
}.cache()

ds.show()
// ds.take(2).foreach(println)

//写入Mysql
// val prop = new Properties()
// prop.setProperty("user", "root")
// prop.setProperty("password", "123456")
// ds.write.mode(SaveMode.Append).jdbc(url, "baike_location", prop)

//写入parquetFile
ds.repartition(10).write.parquet("/home/mi/coding/coding/baikeshow_data/baikeshow1")

}

}

 

df.show打印出来的信息,如果没放在一个case class中的话,name,url,info,summary这列信息会变成1,2,3,4

使用spark-shell查看写回去的parquet文件的信息

1
2
3
4
5
6
7
8
#进入spark-shell
import org.apache.spark.sql.SQLContext
val sqlContext = new SQLContext(sc)
val path = "file:///home/mi/coding/coding/baikeshow_data/baikeshow1"
val df = sqlContext.parquetFile(path)
df.show
df.count

 

如果只想显示某一列的话,可以这么做

1
2
df.select("title").take(100).foreach(println)  //只显示title这一列的信息