1.Airbnb rowkey设计案例
在Airbnb的rowkey设计案例中,使用了hash法避免了写入热点问题,其中
Event_key标识了一条日志的唯一性,用于将来自Kafka的日志数据进行去重;
Shard_id是将Event_key进行hash(可以参考es的路由哈希算法Hashing.murmur3_128)之后,对Shard_num进行取余后的结果,Shard_num感觉应该是当前hbase表region server的总数,由于airbnb在hbase中存储的是实时日志数据,并开启了Hbase的TTL,所以当前hbase表中的数据总量应该是可预测的,即region server数量不会无限增加
Shard_key应该就是当前业务的region_start_keys+shard_id,比如当前业务分配的前缀为00000,同时规划了100个table regions给这个业务,即00-99,那么Shard_key的范围就是0000000-0000099
rowkey就是Shard_key.Event_key,比如0000000.air_events.canaryevent.016230-a3db-434e
参考:
Reliable and Scalable Data Ingestion at Airbnb
Apache HBase at Airbnb
Airbnb软件工程师丁辰 - Airbnb的Streaming ETL
2.rowkey设计原则
1.rowkey长度原则:rowkey是一个二进制码流,可以是任意字符串,最大长度 64kb ,实际应用中一般为10-100bytes,以 byte[]
形式保存,一般设计成定长。
建议越短越好,不要超过16个字节,原因如下:
数据的持久化文件HFile中是按照KeyValue存储的,如果rowkey过长,比如超过100字节,1000w行数据,光rowkey就要占用100*1000w=10亿个字节,将近1G数据,这样会极大影响HFile的存储效率;
MemStore将缓存部分数据到内存,如果rowkey字段过长,内存的有效利用率就会降低,系统不能缓存更多的数据,这样会降低检索效率。
目前操作系统都是64位系统,内存8字节对齐,控制在16个字节,8字节的整数倍利用了操作系统的最佳特性。
2.rowkey散列原则:如果rowkey按照时间戳的方式递增,不要将时间放在二进制码的前面,建议将rowkey的高位作为散列字段,由程序随机生成,低位放时间字段,这样将提高数据均衡分布在每个RegionServer,以实现负载均衡的几率。
如果没有散列字段,首字段直接是时间信息,所有的数据都会集中在一个RegionServer上,这样在数据检索的时候负载会集中在个别的RegionServer上,造成热点问题,会降低查询效率。
全文 >>