tonglin0325的个人主页

机器学习——支持向量机(SVM)之核函数(kernel)

对于线性不可分的数据集,可以利用核函数(kernel)将数据转换成易于分类器理解的形式。

  如下图,如果在x轴和y轴构成的坐标系中插入直线进行分类的话, 不能得到理想的结果,或许我们可以对圆中的数据进行某种形式的转换,从而得到某些新的变量来表示数据。在这种表示情况下,我们就更容易得到大于0或者小于0的测试结果。在这个例子中,我们将数据从一个特征空间转换到另一个特征空间,在新的空间下,我们可以很容易利用已有的工具对数据进行处理,将这个过程称之为从一个特征空间到另一个特征空间的映射。在通常情况下,这种映射会将低维特征空间映射到高维空间

  这种从某个特征空间到另一个特征空间的映射是通过核函数来。

  SVM优化中一个特别好的地方就是,所有的运算都可以写成内积(inner product)的形式。向量的内积指的就是两个向量相乘,之后得到单个标量或者数值。我们可以把内积运算替换成核函数,而并不必做简化处理。将内积替换成核函数的方法被称之为核技巧(kernel trick)或者核“变电”(kernel substation)

 

径向基核函数

径向基核函数是SVM中常用的一个核函数径向基函数是一个采用向量作为自变量的函数,能够基于向量距离运算输出一个标量

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
'''#######********************************
以下是有核函数的版本
'''#######********************************
class optStruct:
def __init__(self,dataMatIn, classLabels, C, toler, kTup): # Initialize the structure with the parameters
self.X = dataMatIn
self.labelMat = classLabels
self.C = C
self.tol = toler
self.m = shape(dataMatIn)[0]
self.alphas = mat(zeros((self.m,1)))
self.b = 0
self.eCache = mat(zeros((self.m,2))) #first column is valid flag
self.K = mat(zeros((self.m,self.m)))
for i in range(self.m):
self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup)

def calcEk(oS, k): #计算误差
fXk = float(multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b)
Ek = fXk - float(oS.labelMat[k])
return Ek

def selectJ(i, oS, Ei): #用于选择第2个循环(内循环)的alpha值,内循环中的启发式方法
maxK = -1; maxDeltaE = 0; Ej = 0
oS.eCache[i] = [1,Ei] #set valid #choose the alpha that gives the maximum delta E
validEcacheList = nonzero(oS.eCache[:,0].A)[0]
if (len(validEcacheList)) > 1:
for k in validEcacheList: #loop through valid Ecache values and find the one that maximizes delta E
if k == i: continue #跳过本身
Ek = calcEk(oS, k)
deltaE = abs(Ei - Ek)
if (deltaE > maxDeltaE): #选取具有最大步长的j
maxK = k; maxDeltaE = deltaE; Ej = Ek
return maxK, Ej
else: #in this case (first time around) we don't have any valid eCache values
j = selectJrand(i, oS.m)
Ej = calcEk(oS, j)
return j, Ej

def updateEk(oS, k): #alpha改变后,更新缓存
Ek = calcEk(oS, k)
oS.eCache[k] = [1,Ek]

#内部循环的代码和简版的SMO代码很相似
def innerL(i, oS):
Ei = calcEk(oS, i)
#判断每一个alpha是否被优化过,如果误差很大,就对该alpha值进行优化,toler是容错率
if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)):
j,Ej = selectJ(i, oS, Ei) #使用启发式方法选取第2个alpha,选取使得误差最大的alpha
alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();
#保证alpha在0与C之间
if (oS.labelMat[i] != oS.labelMat[j]): #当y1和y2异号,计算alpha的取值范围
L = max(0, oS.alphas[j] - oS.alphas[i])
H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
else: #当y1和y2同号,计算alpha的取值范围
L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
H = min(oS.C, oS.alphas[j] + oS.alphas[i])
if L==H: print "L==H"; return 0
#eta是alpha[j]的最优修改量,eta=K11+K22-2*K12,也是f(x)的二阶导数,K表示核函数
eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j] #changed for kernel
#如果二阶导数-eta <= 0,说明一阶导数没有最小值,就不做任何改变,本次循环结束直接运行下一次for循环
if eta >= 0: print "eta>=0"; return 0
oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta #利用公式更新alpha[j],alpha2new=alpha2-yj(Ei-Ej)/eta
oS.alphas[j] = clipAlpha(oS.alphas[j],H,L) #判断alpha的范围是否在0和C之间
updateEk(oS, j) #在alpha改变的时候更新Ecache
print "j=",j
print oS.alphas.A[j]
#如果alphas[j]没有调整,就忽略下面语句,本次循环结束直接运行下一次for循环
if (abs(oS.alphas[j] - alphaJold) < 0.00001): print "j not moving enough"; return 0
oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j
updateEk(oS, i) #在alpha改变的时候更新Ecache
print "i=",i
print oS.alphas.A[i]
#已经计算出了alpha,接下来根据模型的公式计算b
b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j]
b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j]
#根据公式确定偏移量b,理论上可选取任意支持向量来求解,但是现实任务中通常使用所有支持向量求解的平均值,这样更加鲁棒
if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1
elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2
else: oS.b = (b1 + b2)/2.0
return 1 #如果有任意一对alpha发生改变,返回1
else: return 0

#完整版Platt SMO的外循环
def smoP(dataMatIn, classLabels, C, toler, maxIter,kTup=('lin', 0)):
oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler, kTup)
iter = 0
entireSet = True; alphaPairsChanged = 0
while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)): #有alpha改变同时遍历次数小于最大次数,或者需要遍历整个集合
alphaPairsChanged = 0
#首先进行完整遍历,过程和简化版的SMO一样
if entireSet:
for i in range(oS.m):
alphaPairsChanged += innerL(i,oS) #i是第1个alpha的下标
print "完整遍历, 迭代次数: %d i:%d, 成对改变的次数 %d" % (iter,i,alphaPairsChanged)
iter += 1
#非边界遍历,挑选其中alpha值在0和C之间非边界alpha进行优化
else:
nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0] #然后挑选其中值在0和C之间的非边界alpha进行遍历
for i in nonBoundIs:
alphaPairsChanged += innerL(i,oS)
print "非边界, 迭代次数: %d i:%d, 成对改变的次数 %d" % (iter,i,alphaPairsChanged)
iter += 1
#如果这次是完整遍历的话,下次不用进行完整遍历
if entireSet: entireSet = False #终止完整循环
elif (alphaPairsChanged == 0): entireSet = True #如果alpha的改变数量为0的话,再次遍历所有的集合一次
print "iteration number: %d" % iter
return oS.b,oS.alphas

def calcWs(alphas,dataArr,classLabels): #计算模型的参数w,即alpha*y*x转置的累加
X = mat(dataArr); labelMat = mat(classLabels).transpose()
m,n = shape(X)
w = zeros((n,1))
for i in range(m):
w += multiply(alphas[i]*labelMat[i],X[i,:].T)
return w

def testRbf(k1=1.3):
dataArr,labelArr = loadDataSet('testSetRBF.txt')
b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', k1)) #C=200 important
datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
svInd=nonzero(alphas.A>0)[0]
sVs=datMat[svInd] #get matrix of only support vectors
labelSV = labelMat[svInd];
print "there are %d Support Vectors" % shape(sVs)[0]
m,n = shape(datMat)
errorCount = 0
for i in range(m):
kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))
predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
if sign(predict)!=sign(labelArr[i]): errorCount += 1
print "the training error rate is: %f" % (float(errorCount)/m)
dataArr,labelArr = loadDataSet('testSetRBF2.txt')
errorCount = 0
datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
m,n = shape(datMat)
for i in range(m):
kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))
predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
if sign(predict)!=sign(labelArr[i]): errorCount += 1
print "the test error rate is: %f" % (float(errorCount)/m)

def img2vector(filename):
returnVect = zeros((1,1024))
fr = open(filename)
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVect[0,32*i+j] = int(lineStr[j])
return returnVect

def loadImages(dirName):
from os import listdir
hwLabels = []
trainingFileList = listdir(dirName) #load the training set
m = len(trainingFileList)
trainingMat = zeros((m,1024))
for i in range(m):
fileNameStr = trainingFileList[i]
fileStr = fileNameStr.split('.')[0] #take off .txt
classNumStr = int(fileStr.split('_')[0])
if classNumStr == 9: hwLabels.append(-1)
else: hwLabels.append(1)
trainingMat[i,:] = img2vector('%s/%s' % (dirName, fileNameStr))
return trainingMat, hwLabels

def testDigits(kTup=('rbf', 10)):
dataArr,labelArr = loadImages('trainingDigits')
b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup)
datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
svInd=nonzero(alphas.A>0)[0]
sVs=datMat[svInd]
labelSV = labelMat[svInd];
print "there are %d Support Vectors" % shape(sVs)[0]
m,n = shape(datMat)
errorCount = 0
for i in range(m):
kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
if sign(predict)!=sign(labelArr[i]): errorCount += 1
print "the training error rate is: %f" % (float(errorCount)/m)
dataArr,labelArr = loadImages('testDigits')
errorCount = 0
datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
m,n = shape(datMat)
for i in range(m):
kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
if sign(predict)!=sign(labelArr[i]): errorCount += 1
print "the test error rate is: %f" % (float(errorCount)/m)